Recreation of Numbers

Work on Recreation of Numbers and Magic Squares pub-list: DOWNLOAD

General

  1. Inder J. Taneja, 2019 In Numbers, Zenodo, December 31, 2019, pp. 1-27,  http://doi.org/10.5281/zenodo.2529103.
  2. Inder J. Taneja, 2020 In Numbers: Mathematical Style – Revised, Zenodo, December 31, 2019, pp. 1-37,  http://doi.org/10.5281/zenodo.3596193.
  3. Inder J. Taneja, Factorial-Type Numerical Calendar, Zenodo, March 24, 2020, pp. 1-33,  http://doi.org/10.5281/zenodo.3726335.
  4. Inder J. Taneja, Factorial-Type Numerical Calender 2021, Zenodo, December 16, 2020, pp. 1-31,  http://doi.org/10.5281/zenodo.4329889.
  5. Inder J. Taneja, 21 Mathematical Highlights for 2021, Zenodo, December 26, 2020, pp. 1-75,  http://doi.org/10.5281/zenodo.4394408
  6. Inder J. Taneja, Hardy-Ramanujan Number – 1729, Zenodo, December 22, 2021, pp. 1-106,  https://doi.org/10.5281/zenodo.5799640
  7. Inder J. Taneja, Mathematical Beauty of 2022, Zenodo, December 26, 2021, pp. 1-78,  https://doi.org/10.5281/zenodo.5805264

Crazy Representations

  1. Inder J. Taneja, Crazy Sequential Representation: Numbers from 0 to 11111 in terms of Increasing and Decreasing Orders of 1 to 9, Jan. 2014, pp.1-161, http://arxiv.org/abs/1302.1479. Site link: Crazy Representations of Natural Numbers – The 10958 Problem, https://inderjtaneja.com/2018/11/16/crazy-representations-of-natural-numbers-the-10958-problem.
  2. Inder J. Taneja, Crazy Representations of Natural Numbers From 11112 to 20000, Zenodo, January 18, 2019, pp. 1-224, http://doi.org/10.5281/zenodo.2543626.
  3. Inder J. Taneja, Crazy Representations of Natural Numbers From 20001 to 30000, Zenodo, February 3, 2019, pp. 1-276, http://doi.org/10.5281/zenodo.2556036.
  4. Inder J. Taneja, Natural Numbers From 1 to 20000 in Terms of Fibonacci Sequence and Triangular Numbers. Zenodo, February 3, 2019, pp. 1-491, http://doi.org/10.5281/zenodo.2575093.
  5. Inder J. Taneja, Pyramid-Type Representations of Natural Numbers, Zenodo, February 5, 2020, pp. 1-213, http://doi.org/10.5281/zenodo.3637662.
  6. Inder J. Taneja, Crazy Representations of Natural Numbers From 20001 to 40000, Zenodo, November 03, 2021, pp. 1-541, https://doi.org/10.5281/zenodo.5642776.
  7. Inder J. Taneja, Crazy Representations of Natural Numbers From 40001 to 60000, Zenodo, November 03, 2021, pp. 1-541, https://doi.org/10.5281/zenodo.5642826.
  8. Inder J. Taneja, Crazy Representations of Natural Numbers From 60001 to 80000, Zenodo, November 03, 2021, pp. 1-537, https://doi.org/10.5281/zenodo.5642896.
  9. Inder J. Taneja, Crazy Representations of Natural Numbers From 80001 to 100000, Zenodo, November 03, 2021, pp. 1-533, https://doi.org/10.5281/zenodo.5642929.
  10. Inder J. Taneja, Representation of Numbers from 1 to 10000 in Terms of Palindromic Digits 2022-2202, Zenodo, January 02, 2022, pp. 1-238, https://doi.org/10.5281/zenodo.5813778
  11. Inder J. Taneja, Representation of Numbers from 1 to 10000 in Terms of Palindromic Digits 2022-2202, Zenodo, January 02, 2022, pp. 1-238, https://doi.org/10.5281/zenodo.5813778
  12. Inder J. Taneja, Representation of Numbers from 1 to 20000 in Terms of Palindromic Digits 1357-9-7531, Zenodo, January 06, 2022, pp. 1-266, https://doi.org/10.5281/zenodo.5826240
  13. Inder J. Taneja, Crazy Representations of Natural Numbers from 200001 to 220000, Zenodo, January 08, 2022, pp. 1-529, https://doi.org/10.5281/zenodo.5831196
  14. Inder J. Taneja, Crazy Representations of Natural Numbers from 220001 to 240000, Zenodo, January 08, 2022, pp. 1-534, https://doi.org/10.5281/zenodo.5831198
  15. Inder J. Taneja, Crazy Representations of Natural Numbers from 240001 to 260000, Zenodo, January 08, 2022, pp. 1-532, https://doi.org/10.5281/zenodo.5831200
  16. Inder J. Taneja, Crazy Representations of Natural Numbers from 260001 to 280000, Zenodo, January 08, 2022, pp. 1-537, https://doi.org/10.5281/zenodo.5831206
  17. Inder J. Taneja, Crazy Representations of Natural Numbers from 280001 to 300000, Zenodo, January 08, 2022, pp. 1-535, https://doi.org/10.5281/zenodo.5831208
  • Running Expressions
  1. Inder J. Taneja, Running Expressions in Increasing and Decreasing Orders of Natural Numbers Separated by Equality Signs, RGMIA Research Report Collection, 18(2015), Article 27, pp.1-54, http://rgmia.org/papers/v18/v18a27.pdf.
  2. Inder J. Taneja, Running Expressions with Equalities: Increasing and Decreasing Orders – I, RGMIA Research Report Collection, 20(2017), Art. 33, pp. 1-57, http://rgmia.org/papers/v20/v20a33.pdf.
  3. Inder J. Taneja, Running Expressions with Equalities: Increasing and Decreasing Orders – II, RGMIA Research Report Collection, 20(2017), Art. 34, pp. 1-87, http://rgmia.org/papers/v20/v20a34.pdf.
  4. Inder J. Taneja, Fibonacci Sequence and Running Expressions with Equalities – I, RGMIA Research Report Collection, 20(2017), Art. 35, pp. 1-83, http://rgmia.org/papers/v20/v20a35.pdf.
  5. Inder J. Taneja, Running Expressions with Triangular Numbers – I, Zenodo, December 21, 2018, http://doi.org/10.5281/zenodo.2483327
  6. Inder J. Taneja, Crazy Running Equality Expressions With Factorial and Square-Root, Zenodo, December 06, 2021, pp. 1-464, https://doi.org/10.5281/zenodo.5761752

  • Single Digit
  1. Inder J. Taneja, Single Digit Representations of Natural Numbers, Feb. 1015, pp.1-55, http://arxiv.org/abs/1502.03501. Site link: Single Digits Representations of Numbers from 1 to 20000, https://inderjtaneja.com/2019/01/01/single-letter-representations-of-numbers-from-1-to-20000.
  2. Inder J. Taneja, Single Digit Representations of Natural Numbers From 1 to 5000, Zenodo, January 14, 2019, http://doi.org/10.5281/zenodo.2538893
  3. Inder J. Taneja, Single Digit Representations of Natural Numbers From 5001 to 10000Zenodo, January 14, 2019, http://doi.org/10.5281/zenodo.2538897
  4. Inder J. Taneja, Single Digit Representations of Numbers From 10001 to 15000Zenodo, January, 26, 2019, pp. 1-510, http://doi.org/10.5281/zenodo.2550414
  5. Inder J. Taneja, Single Digit Representations of Numbers From 15001 to 20000, Zenodo, January, 26, 2019, pp. 1-510, http://doi.org/10.5281/zenodo.2550440.
  6. Inder J. Taneja, Patterned Single Digits Representations of Natural NumbersZenodo, July 04, 2020, pp. 1-590, http://doi.org/10.5281/zenodo.3930382
  7. Inder J. Taneja, Single Digit Representations of Natural Numbers From 20001 to 30000, Zenodo, March 21, 2022, pp. 1-1271, https://doi.org/10.5281/zenodo.6373774.
  8. Inder J. Taneja, Single Digit Representations of Natural Numbers From 30001 to 40000, Zenodo, March 23, 2022, pp. 1-1269, https://doi.org/10.5281/zenodo.6379827.
  9. Inder J. Taneja, Single Digit Representations of Natural Numbers From 40001 to 50000, Zenodo, March 23, 2022, pp. 1-1268, https://doi.org/10.5281/zenodo.6379875.
  • Single Letter
  1. Inder J. Taneja, Fraction-Type Single Letter Representations of Natural Numbers From 1 to 11111Zenodo, February 4, 2019, pp. 1-203, http://doi.org/10.5281/zenodo.2556902. Site link: Single Letter Representations Of Natural Numbers, https://inderjtaneja.com/2017/08/19/single-letter-representations-of-natural-numbers.
  2. Inder J. Taneja, Single Letter Representations of Natural Numbers from 1 to 11111Zenodo, February 5, 2019, pp. 1-133, http://doi.org/10.5281/zenodo.2557025.
  3. Inder J. Taneja, Single Letter Patterned Representations and Fibonacci Sequence ValuesZenodo, February 6, 2019, pp. 1-40, http://doi.org/10.5281/zenodo.2558522.
  4. Inder J. Taneja. (2020). Patterned Single Letter Representations of Natural NumbersZenodo, July 02, 2020, pp. 1-110, http://doi.org/10.5281/zenodo.3928507
  • Flexible Power
  1. Inder J. Taneja, Pyramidical Representations of Natural Numbers, RGMIA Research Report Collection, 19(2016), pp.1-95, Art 58, http://rgmia.org/papers/v19/v19a58.pdf. Site link: Pyramidical-Type Representations of Natural Numbers, https://inderjtaneja.com/2017/08/20/pyramidical-type-representations-of-natural-numbers.
  2. Inder J. Taneja, All Digits Flexible Power Representations of Natural Numbers From 11112 to 30000, Zenodo, January 14, 2019, pp. 1-140, http://doi.org/10.5281/zenodo.2539203.
  3. Inder J. Taneja,  All Digits Flexible Power Representations of Natural Numbers From 30001 to 50000, Zenodo, January 14, 2019, pp. 1-147, http://doi.org/10.5281/zenodo.2539412. Site link: Flexible Power Representations: Equal String Lengths, https://inderjtaneja.com/2017/08/20/flexible-power-representations-equal-string-lengths.
  4. Inder J. Taneja, Permutable Power Minimum Length Representations of Natural Numbers from 0 to 20000, Zenodo, January, 30, 2019, pp. 1-288, http://doi.org/10.5281/zenodo.2553326

Narcissistic-Type

  1. Inder J. Taneja, Flexible Powers Narcissistic-Type NumbersZenodo, February 19, 2019, pp. 1-126,  http://doi.org/10.5281/zenodo.2572770
  2. Inder J. Taneja, Fixed and Flexible Powers Narcissistic Numbers with DivisionZenodo, February 19, 2019, pp. 1-142, http://doi.org/10.5281/zenodo.2573047
  3. Inder J. Taneja, Fixed and Flexible Powers Narcissistic Numbers with Division (revised), Zenodo, May 11, 2020, pp. 1-201, http://doi.org/10.5281/zenodo.3820428

Selfie Expressions

  1. Inder J. Taneja, Same Digits Equalities Expressions, Zenodo, February 19, 2019, pp. 1-182,  http://doi.org/10.5281/zenodo.2573194
  2. Inder J. Taneja, Factorial-Power Selfie ExpressionsZenodo, February 20, 2019, pp. 1-115,  http://doi.org/10.5281/zenodo.2573569.
  3. Inder J. Taneja, Selfie Expressions With Factorial, Fibonacci and Triangular ValuesZenodo, February 20, 2019, pp. 1-180, http://doi.org/10.5281/zenodo.2574151
  4. Inder J. Taneja, Same Digits Equality Expressions: Power and Plus, Zenodo, January 03, 2020, 2019, pp. 1-1729, http://doi.org/10.5281/zenodo.3597506

Selfie Numbers

  • Permutable, Basic, Factorial and Square-Root
  1. Inder J. Taneja, Permutable Powers Selfie NumbersZenodo, February 15, 2019, pp. 1-227,  http://doi.org/10.5281/zenodo.2566445
  2. Inder J. Taneja, Selfie Numbers: Basic OperationsZenodo, March 26, 2019, pp. 1-134,  http://doi.org/10.5281/zenodo.2609143
  3. Inder J. Taneja, Factorial-Type Selfie Numbers in Digit’s OrderZenodo, March 06, 2019, pp. 1-243,  http://doi.org/10.5281/zenodo.2585586
  4. Inder J. Taneja, Factorial-Type Selfie Numbers in Reverse Order of DigitsZenodo, March 06, 2019, pp. 1-227, http://doi.org/10.5281/zenodo.2585599
  5. Inder J. Taneja, Square-Root Type Selfie NumbersZenodo, July 06, 2019, pp. 1-248,  http://doi.org/10.5281/zenodo.3352388
  • Fibonacci and Triangular Numbers
  1. Inder J. Taneja, Fibonacci Sequence and Selfie NumbersZenodo, February 19, 2019, pp. 1-233,   http://doi.org/10.5281/zenodo.2572044
  2. Inder J. Taneja, Triangular-Type Selfie NumbersZenodo, February 17, 2019, pp. 1-91,   http://doi.org/10.5281/zenodo.2567571
  3. Inder J. Taneja, Simultaneous Representations of Selfie Numbers in Terms of Fibonacci and Triangular NumbersZenodo, February 19, 2019, pp. 1-233, http://doi.org/10.5281/zenodo.2574136
  4. Inder J. Taneja, Triangular-Type Selfie Numbers: Digit’s Order, Zenodo, April 11, 2019, pp. 1-240, http://doi.org/10.5281/zenodo.2636787
  5. Inder J. Taneja, Triangular-Type Selfie Numbers: Reverse Order of Digits, Zenodo, April 14, 2019, pp. 1-249,  http://doi.org/10.5281/zenodo.2639099
  6. Inder J. Taneja, Fibonacci Sequence Type Selfie Numbers: Basic Operations,   Zenodo, April 28, 2019, pp. 1-163, http://doi.org/10.5281/zenodo.2653093
  7. Inder J. Taneja, Fibonacci Sequence Type Selfie Numbers With Square-RootZenodo, October 10, 2019, pp. 1-206, http://doi.org/10.5281/zenodo.3479255.
  8. Inder J. Taneja, Fibonacci Sequence Type Selfie Numbers with Factorial: Digit’s OrderZenodo, October 13, 2019, pp. 1-692, http://doi.org/10.5281/zenodo.3484117.
  9. Inder J. Taneja, Fibonacci Sequence Type Selfie Numbers with Factorial: Reverse Order of DigitsZenodo, October 13, 2019, pp. 1-742, http://doi.org/10.5281/zenodo.3484119.
  • Binomial Coefficients
  1. Inder J. Taneja, Selfie Numbers With Binomial CoefficientsZenodo, March 17, 2019, pp. 1-131,  http://doi.org/10.5281/zenodo.2596421.
  2. Inder J. Taneja, Selfie Numbers With Binomial Coefficients and Fibonacci NumbersZenodo, March 30, 2019, pp. 1-148,  http://doi.org/10.5281/zenodo.2617290
  3. Inder J. Taneja, Binomial Coefficients Triangular Type Selfie Numbers: Basic OperationsZenodo, April 25, 2019, pp. 1-72,  http://doi.org/10.5281/zenodo.2650508
  4. Inder J. Taneja, Selfie Numbers With Binomial Coefficients, Triangular Numbers and Square-RootZenodo, May 10, 2019, pp. 1-209, http://doi.org/10.5281/zenodo.2707318
  5. Inder J. Taneja, Selfie Numbers With Binomial Coefficients, Triangular Numbers and Factorial, Zenodo, July 09, 2019, pp. 1-172, http://doi.org/10.5281/zenodo.3273300.
  • Quadratic and Cubic
  1. Inder J. Taneja, Quadratic-Type Selfie Numbers, Zenodo, February 25, 2019, pp. 1-315,  http://doi.org/10.5281/zenodo.2577472
  2. Inder J. Taneja, Cubic-Type Selfie Numbers, Zenodo, March 12, 2019, pp. 1-150,  http://doi.org/10.5281/zenodo.2591257
  • Concatenation-Type
  1. Inder J. Taneja, Concatenation-Type Selfie Numbers With Factorial and Square-RootZenodo, March 08, 2019, pp. 1-43, http://doi.org/10.5281/zenodo.2587751

Selfie Fractions

  1. Inder J. Taneja, Selfie Fractions: Addable, Subtractable, Dottable and PotentiableZenodo, March 24, 2019, pp. 1-260, http://doi.org/10.5281/zenodo.2604531
  2. Inder J. Taneja, Pandigital Equivalent Selfie FractionsZenodo, April 02, 2019, pp. 1-392,  http://doi.org/10.5281/zenodo.2622028
  3. Inder J. Taneja, Repeated Digits Selfie Fractions: Two and Three Digits NumeratorsZenodo, Septembr 12, 2019, pp. 1-1091, http://doi.org/10.5281/zenodo.3406655
  4. Inder J. Taneja, Different Digits Selfie Fractions: Two and Three Digits Numerators – RevisedZenodo, September, 12, 2019, pp. 1-337, http://doi.org/10.5281/zenodo.3406674http://doi.org/10.5281/zenodo.3474091
  5. Inder J. Taneja, Different Digits Selfie Fractions: Four Digits NumeratorZenodo, October 06, 2019, pp. 1-844, http://doi.org/10.5281/zenodo.3474267
  6. Inder J. Taneja, Different Digits Selfie Fractions: Five Digits Numerator – PandigitalZenodo, October 06, 2019, pp. 1-362, http://doi.org/10.5281/zenodo.3474379
  7. Inder J. Taneja, Patterned Selfie FractionsZenodo, October 27, 2019, pp. 1-267,  http://doi.org/10.5281/zenodo.3520096

Equivalent Fractions

  1. Inder J. Taneja, Different Digits Equivalent Fractions – IZenodo, March 24, 2019, pp. 1-165,  http://doi.org/10.5281/zenodo.2604565
  2. Inder J. Taneja, Different Digits Equivalent Fractions – IIZenodo, March 24, 2019, pp. 1-244,  http://doi.org/10.5281/zenodo.2604738
  3. Inder J. Taneja, Different Digits Equivalent Fractions: Single Digit NumeratorZenodo, November 15, 2019, pp. 1-794, http://doi.org/10.5281/zenodo.3543532
  4. Inder J. Taneja, Different Digits Equivalent Fractions: Two Digits NumeratorZenodo, November 15, 2019, pp. 1-794, http://doi.org/10.5281/zenodo.3543752
  5. Inder J. Taneja, Different Digits Equivalent Fractions: Three Digits NumeratorZenodo, November 19, 2019, pp. 1-1014, http://doi.org/10.5281/zenodo.3547874

Amicable Numbers

  1. Inder J. Taneja, Amicable Numbers With Patterns in Products and PowersZenodo, March 05, 2019, pp. 1-25, http://doi.org/10.5281/zenodo.2583306

Semi-Selfie Numbers

  1. Inder J. Taneja, Semi-Selfie NumbersZenodo, February 12, 2019, pp. 1-394,  http://doi.org/10.5281/zenodo.2562390
  2. Inder J. Taneja, Power-Type Semi-Selfie Numbers and PatternsZenodo, July 16, 2019, pp. 1-130,  http://doi.org/10.5281/zenodo.3338366
  3. Inder J. Taneja, Patterns in Selfie and Semi-Selfie NumbersZenodo, February 6, 2019, pp. 1-51,  http://doi.org/10.5281/zenodo.2563202

Palindromic-Type

  1. Inder J. Taneja, Palindromic-Type Palindromes – IZenodo, January 15, 2019, pp. 1-99,  http://doi.org/10.5281/zenodo.2541174
  2. Inder J. Taneja, Palindromic-Type Non-Palindromes – IZenodo, January 15, 2019, pp. 1-117,  http://doi.org/10.5281/zenodo.2541187
  3. Inder J. Taneja, Palindromic-Type Squared Expressions with Palindromic and Non-Palindromic Sums – IZenodo, January 15, 2019, pp. 1-133, http://doi.org/10.5281/zenodo.2541198

Pythagorean Triples

  1. Inder J. Taneja, Patterns in Pythagorean Triples Using Single and Double Variable ProceduresZenodo, January 19, 2019, pp. 1-134, http://doi.org/10.5281/zenodo.2544519
  2. Inder J. Taneja, Multiple-Type Patterns and Pythagorean TriplesZenodo, January 19, 2019, pp.1-53,  http://doi.org/10.5281/zenodo.2544527
  3. Inder J. Taneja, Palindromic-Type Pandigital Patterns in Pythagorean TriplesZenodo, January 20, 2019, pp. 1-160, http://doi.org/10.5281/zenodo.2544551
  4. Inder J. Taneja, Generating Pythagorean Triples, Patterns, and Magic SquaresZenodo, January 20, 2019, pp. 1-121, http://doi.org/10.5281/zenodo.2544555
  5. Inder J. Taneja, Patterns in Pythagorean Triples, Zenodo, March 13, 1-136, 2021, http://doi.org/10.5281/zenodo.4603197.
  6. Inder J. Taneja, Pandigital-Type and Pythagorean Triples Patterns, Zenodo, March 17, 1-750,  http://doi.org/10.5281/zenodo.4611511.

Prime Numbers

  1. Inder J. Taneja, Fixed Digits Repetitions Prime Patterns of Lengths 10, 9 and 8, Zenodo, February 8, 2019, pp. 1-175,  http://doi.org/10.5281/zenodo.2560640
  2. Inder J. Taneja, Fixed Digits Repetitions Prime Patterns of Length 7Zenodo, February 8, 2019, pp. 1-176,  http://doi.org/10.5281/zenodo.2560668
  3. Inder J. Taneja, Fixed Digits Repetitions Prime Patterns of Length 6Zenodo, February 9, 2019, pp. 1-303,  http://doi.org/10.5281/zenodo.2561096
  4. Inder J. Taneja, (2019-RG). Magic Squares Type Palprimes of Orders 5×5, 7×7 and 9×9, Zenodo, February 27, 2019, pp. 1-143, http://doi.org/10.5281/zenodo.2578443.
  5. Inder J. Taneja, Prime Numbers in Prime Numbers Up To 5 DigitsZenodo, July 16, 2019, pp. 1-265, http://doi.org/10.5281/zenodo.3338679
  6. Inder J. Taneja, Same Digits Embedded Palprimes of Lengths 3, 5 and 7Zenodo, August 08, 2020, pp. 1-315, http://doi.org/10.5281/zenodo.3977028
  7. Inder J. Taneja, Prime Numbers in Fixed Digits Repetitions Prime PatternsZenodo, November 10, 2020, pp. 1-280, http://doi.org/10.5281/zenodo.4265818
  8. Inder J. Taneja, 4-Digits Prime Numbers in Fixed Digits Repetition Prime PatternsZenodo, November 29, 2020, pp. 1-1544, http://doi.org/10.5281/zenodo.4295652
  9. Inder J. Taneja, 3 and 5-Digits Multiple Choice Embedded PalprimesZenodo, December 05, 2020, pp. 1-511, http://doi.org/10.5281/zenodo.4307875
  10. Inder J. Taneja. (2021). Fixed Digits Repetitions Prime Patterns for 5-Digits Prime Numbers, Zenodo, January 17, 2021, pp. 1-2069, http://doi.org/10.5281/zenodo.4445395

Power Expressions

  1. Inder J. Taneja, Multiple Choice Power ExpressionsZenodo, February 15, 2019, pp. 1-143,  http://doi.org/10.5281/zenodo.2565729

Geometry

  1. Inder J. Taneja, Geometrical, Numerical, and Symmetrical Representations for the Days of 2020Zenodo, October 04, 2020, pp. 1-201, http://doi.org/10.5281/zenodo.4065069
One thought on “Recreation of Numbers”

Leave a Reply

Your email address will not be published. Required fields are marked *

WP Twitter Auto Publish Powered By : XYZScripts.com