1. General Work

  1. Inder J. Taneja, 2019 In NumbersZenodo, December 31, 2019, pp. 1-27, http://doi.org/10.5281/zenodo.2529103.
  2. Inder J. Taneja, 2020 In Numbers: Mathematical StyleZenodo, December 31, 2019, pp. 1-37, http://doi.org/10.5281/zenodo.3596193.
  3. Inder J. Taneja, Factorial-Type Numerical CalendarZenodo, March 24, 2020, pp. 1-33, http://doi.org/10.5281/zenodo.3726335.
  4. Inder J. Taneja, 21 Mathematical Highlights for 2021Zenodo, December 26, 2020, pp. 1-75, http://doi.org/10.5281/zenodo.4394408.
  5. Inder J. TanejaGeometrical, Numerical, and Symmetrical Representations for the Days of 2020Zenodo, October 04, 2020, pp. 1-201, http://doi.org/10.5281/zenodo.4065069.
  6. Inder J. Taneja, Hardy-Ramanujan Number – 1729Zenodo, December 22, 2021, pp. 1-106, https://doi.org/10.5281/zenodo.5799640.
  7. Inder J. Taneja, Mathematical Beauty of 2022Zenodo, December 26, 2021, pp. 1-78, https://doi.org/10.5281/zenodo.5805264.
  8. Inder J. Taneja, 23 and 2023 in Numbers and Patterns, Zenodo, December 22, 2022, pp. 1-51, https://doi.org/10.5281/zenodo.7473340.
  9. Inder J. Taneja, Mathematical Representations of the Last Day of the Year 23 Written American Style: 12.31.23 (123123), Zenodo, December 19, 2023, pp. 1-13, https://doi.org/10.5281/zenodo.10405771.
  10. Inder J. Taneja, Mathematical Aspects of 24 and 2024, Zenodo, December 19, 2023, pp. 1-40, https://doi.org/10.5281/zenodo.10406530.

Site Links of General Work

  1. Inder J. Taneja, 2019 In Numbers
  2. Inder J. Taneja, 2020 In Numbers – Mathematical Style
  3. Inder J. Taneja, Factorial-Type Numerical Calendar
  4. Inder J. Taneja, 21 Mathematical Highlights for 2021 
  5. Inder J. TanejaGeometrical, Numerical, and Symmetrical Representations for the Days of 2020
  6. Inder J. Taneja, Hardy-Ramanujan Number – 1729
  7. Inder J. Taneja, Mathematical Beauty of 2022
  8. Inder J. Taneja, 23 and 2023 in Numbers and Patterns
  9. Inder J. Taneja, Last Day of the Year 23 Written American Style: 12.31.23 (123123)
  10. Inder J. Taneja, Mathematical Aspects of 24 and 2024

2. Crazy Representations: Increasing and Decreasing Orders

Numbers from 0 to 300.000

  1. Inder J. Taneja, Crazy Sequential Representation: Numbers from 0 to 11111 in terms of Increasing and Decreasing Orders of 1 to 9, Jan. 2014, pp.1-161, http://arxiv.org/abs/1302.1479.
  2. Inder J. Taneja, Crazy Representations of Natural Numbers From 11112 to 20000Zenodo, January 18, 2019, pp. 1-224, http://doi.org/10.5281/zenodo.2543626.
  3. Inder J. Taneja, Crazy Representations of Natural Numbers From 20001 to 40000Zenodo, November 03, 2021, pp. 1-541, https://doi.org/10.5281/zenodo.5642776.
  4. Inder J. Taneja, Crazy Representations of Natural Numbers From 40001 to 60000Zenodo, November 03, 2021, pp. 1-541, https://doi.org/10.5281/zenodo.5642826.
  5. Inder J. Taneja, Crazy Representations of Natural Numbers From 60001 to 80000Zenodo, November 03, 2021, pp. 1-537, https://doi.org/10.5281/zenodo.5642896.
  6. Inder J. Taneja, Crazy Representations of Natural Numbers From 80001 to 100000Zenodo, November 03, 2021, pp. 1-533, https://doi.org/10.5281/zenodo.5642929.
  7. Inder J. Taneja, Crazy Representations of Natural Numbers from 100001 to 120000 – Revised, Zenodo, August 02, 2024, pp. 1-527, https://doi.org/10.5281/zenodo.13152357.
  8. Inder J. Taneja, Crazy Representations of Natural Numbers from 120001 to 140000- Revised, Zenodo, August 02, 2024, pp. 1-524, https://doi.org/10.5281/zenodo.13153617.
  9. Inder J. Taneja, Crazy Representations of Natural Numbers from 140001 to 160000 – Revised, Zenodo, August 02, 2024, pp. 1-526, https://doi.org/10.5281/zenodo.13153790.
  10. Inder J. Taneja, Crazy Representations of Natural Numbers from 160000 to 180000 – Revised, Zenodo, August 02, 2024, pp. 1-521, https://doi.org/10.5281/zenodo.13153929.
  11. Inder J. Taneja, Crazy Representations of Natural Numbers from 180000 to 200000 – Revised, Zenodo, August 02, 2024, pp. 1-526, https://doi.org/10.5281/zenodo.13154022.
  12. Inder J. Taneja, Crazy Representations of Natural Numbers from 200001 to 220000 – Revised, Zenodo, August 05, 2024, pp. 1-526, https://doi.org/10.5281/zenodo.13215779.
  13. Inder J. Taneja, Crazy Representations of Natural Numbers from 220001 to 240000 – Revised, Zenodo, August 05, 2024, pp. 1-531, https://doi.org/10.5281/zenodo.13215838.
  14. Inder J. Taneja, Crazy Representations of Natural Numbers from 240001 to 260000 – Revised, Zenodo, August 05, 2024, pp. 1-529, https://doi.org/10.5281/zenodo.13215887.
  15. Inder J. Taneja, Crazy Representations of Natural Numbers from 260001 to 280000 – Revised, Zenodo, August 05, 2024, pp. 1-534, https://doi.org/10.5281/zenodo.13215912.
  16. Inder J. Taneja, Crazy Representations of Natural Numbers from 280001 to 300000 – Revised, Zenodo, August 05, 2024, pp. 1-532, https://doi.org/10.5281/zenodo.13215947.

Non-Sequential Numbers Representations

  1. Inder J. Taneja, Representation of Numbers from 1 to 10000 in Terms of Palindromic Digits 2022-2202Zenodo, January 02, 2022, pp. 1-238, https://doi.org/10.5281/zenodo.5813778.
  2. Inder J. Taneja, Representation of Numbers from 1 to 20000 in Terms of Palindromic Digits 1357-9-7531Zenodo, January 06, 2022, pp. 1-266, https://doi.org/10.5281/zenodo.5826240.

Different Types Representations

  1. Inder J. Taneja, Crazy Representations of Natural Numbers 0 to 10000 Using Triangular Numbers, Zenodo, pp. 1-259, 2024, https://doi.org/10.5281/zenodo.10516039
  2. Inder J. Taneja, Crazy Representations of Natural Numbers from 0 to 10000 Using Fibonacci Sequence Values, Zenodo, pp. 1-261, 2024, https://doi.org/10.5281/zenodo.10501468
  3. Inder J. Taneja, Crazy Representations of Natural Numbers from 0 to 10000 Using Square Function, Zenodo, March 28, 2024, pp. 1- 259, https://doi.org/10.5281/zenodo.10892480.
  4. Inder J. Taneja, Crazy Representations of Natural Numbers from 0 to 10000 Using Cubic Function, Zenodo, March 30, 2024, pp. 1-259, https://doi.org/10.5281/zenodo.10899695.
  5. Inder J. Taneja, Natural Numbers From 1 to 20000 in Terms of Fibonacci Sequence and Triangular NumbersZenodo, February 3, 2019, pp. 1-491,  http://doi.org/10.5281/zenodo.2575093.

Site Links of Crazy Representations

3. Permutable Bases and Powers Representations

  1. Inder J. Taneja, Crazy Power Representations of Natural Numbers, RGMIA Research Report Collection, 19(2016), Art. 31, pp.1-71, http://rgmia.org/papers/v19/v19a31.pdf.
  2. Inder J. Taneja, Flexible Power Representations of Natural Numbers, RGMIA Research Report Collection,19(2016), Art 131, pp. 1-91, http://rgmia.org/papers/v19/v19a131.pdf.
  3. Inder J. Taneja, Pyramidical Representations of Natural Numbers, RGMIA Research Report Collection, 19(2016), pp.1-95, Art 58, http://rgmia.org/papers/v19/v19a58.pdf. 
    Site link: Pyramidical-Type Representations of Natural Numbers, https://inderjtaneja.wordpress.com/2017/08/20/pyramidical-type-representations-of-natural-numbers.
  4. Inder J. Taneja, All Digits Flexible Power Representations of Natural Numbers From 11112 to 30000, Zenodo, January 14, 2019, pp. 1-140, http://doi.org/10.5281/zenodo.2539203.
  5. Inder J. Taneja, All Digits Flexible Power Representations of Natural Numbers From 30001 to 50000, Zenodo , January 14, 2019, pp. 1-147, http://doi.org/10.5281/zenodo.2539412.
    Site link: Flexible Power Representations: Equal String Lengths, https://inderjtanejawordpress.com/2017/08/20/flexible-power-representations-equal-string-lengths.
  6. Inder J. Taneja, Permutable Power Minimum Length Representations of Natural Numbers from 0 to 20000, Zenodo, January, 30, 2019, pp. 1-288, http://doi.org/10.5281/zenodo.2553326.
  7. Inder J. Taneja, Pyramid-Type Representations of Natural NumbersZenodo, February 5, 2020, pp. 1-213, http://doi.org/10.5281/zenodo.3637662.
  8. Inder J. Taneja, Pyramid-Type Representations of Natural Numbers from 1001 to 10000, Zenodo, January 16, 2024, pp. 1-585, http://doi.org/10.5281/zenodo.10520278.

4. Running Expressions: Sequential Representations

  1. Inder J. Taneja, Running Expressions in Increasing and Decreasing Orders of Natural Numbers Separated by Equality Signs, RGMIA Research Report Collection, 18(2015), Article 27, pp.1-54, http://rgmia.org/papers/v18/v18a27.pdf.
  2. Inder J. Taneja, Running Expressions with Equalities: Increasing and Decreasing Orders – I, RGMIA Research Report Collection, 20(2017), Art. 33, pp.1-57, http://rgmia.org/papers/v20/v20a33.pdf.
  3. Inder J. Taneja, Running Expressions with Equalities: Increasing and Decreasing Orders – II, RGMIA Research Report Collection, 20(2017), Art. 34, pp.1-87, http://rgmia.org/papers/v20/v20a34.pdf.
  4. Inder J. Taneja, Fibonacci Sequence and Running Expressions with Equalities – I, RGMIA Research Report Collection, 20(2017), Art. 35, pp. 1-83, http://rgmia.org/papers/v20/v20a35.pdf.
  5. Inder J. Taneja, Running Expressions with Triangular Numbers – IZenodo, December 21, 2018, http://doi.org/10.5281/zenodo.2483327.
  6. Inder J. Taneja, Crazy Running Equality Expressions with Factorial and Square-RootZenodo, December 06, 2021, pp. 1-464, https://doi.org/10.5281/zenodo.5761752.

5. Single Digit and Letter Representations

Single Digit

  1. Inder J. Taneja, Single Digit Representations of Natural Numbers, Feb. 1015, pp.1-55, http://arxiv.org/abs/1502.03501.
    Site link: Single Digits Representations of Numbers from 1 to 20000, https://inderjtaneja.com/2019/01/01/single-letter-representations-of-numbers-from-1-to-20000.
  2. Inder J. TanejaSingle Digit Representations of Natural Numbers From 1 to 5000, Zenodo, January 14, 2019, http://doi.org/10.5281/zenodo.2538893.
  3. Inder J. TanejaSingle Digit Representations of Natural Numbers From 5001 to 10000Zenodo, January 14, 2019, http://doi.org/10.5281/zenodo.2538897.
  4. Inder J. TanejaSingle Digit Representations of Numbers From 10001 to 15000Zenodo, January, 26, 2019, pp. 1-510, http://doi.org/10.5281/zenodo.2550414.
  5. Inder J. TanejaSingle Digit Representations of Numbers From 15001 to 20000, Zenodo, January, 26, 2019, pp. 1-510, http://doi.org/10.5281/zenodo.2550440.
  6. Inder J. TanejaPatterned Single Digits Representations of Natural NumbersZenodo, July 04, 2020, pp. 1-590, http://doi.org/10.5281/zenodo.3930382.
  7. Inder J. Taneja, Single Digit Representations of Natural Numbers From 20001 to 30000, Zenodo, March 21, 2022, pp. 1-1271, https://doi.org/10.5281/zenodo.6373774.
  8. Inder J. Taneja, Single Digit Representations of Natural Numbers From 30001 to 40000, Zenodo, March 23, 2022, pp. 1-1269, https://doi.org/10.5281/zenodo.6379827.
  9. Inder J. Taneja, Single Digit Representations of Natural Numbers From 40001 to 50000, Zenodo, March 23, 2022, pp. 1-1268, https://doi.org/10.5281/zenodo.6379875.

Single Letter

  1. Inder J. Taneja, Fraction-Type Single Letter Representations of Natural Numbers From 1 to 11111Zenodo, February 4, 2019, pp. 1-203, http://doi.org/10.5281/zenodo.2556902.
    Site link: Single Letter Representations of Natural Numbers, https://inderjtaneja.com/2017/08/19/single-letter-representations-of-natural-numbers.
  2. Inder J. TanejaSingle Letter Representations of Natural Numbers from 1 to 11111Zenodo, February 5, 2019, pp. 1-133, http://doi.org/10.5281/zenodo.2557025.
  3. Inder J. TanejaSingle Letter Patterned Representations and Fibonacci Sequence ValuesZenodo, February 6, 2019, pp. 1-40, http://doi.org/10.5281/zenodo.2558522.
  4. Inder J. Taneja, Patterned Single Letter Representations of Natural NumbersZenodo, July 02, 2020, pp. 1-110, http://doi.org/10.5281/zenodo.3928507.

6. Narcissistic-Type

  1. Inder J. TanejaFlexible Powers Narcissistic-Type NumbersZenodo, February 19, 2019, pp. 1-126, http://doi.org/10.5281/zenodo.2572770.
  2. Inder J. TanejaFixed and Flexible Powers Narcissistic Numbers with DivisionZenodo, February 19, 2019, pp. 1-142, http://doi.org/10.5281/zenodo.2573047.
  3. Inder J. TanejaFixed and Flexible Powers Narcissistic Numbers with Division (revised), Zenodo, May 11, 2020, pp. 1-201, http://doi.org/10.5281/zenodo.3820428.
  4. Inder J. Taneja, Unified Study of Narcissistic Numbers without and with Division, \textbf{Zenodo}, Feb. 15, 2024, pp. 1-353, http://doi.org/10.5281/zenodo.10662872.

7. Selfie Expressions

  1. Inder J. TanejaSame Digits Equalities Expressions, Zenodo, February 19, 2019, pp. 1-182, http://doi.org/10.5281/zenodo.2573194.
  2. Inder J. TanejaFactorial-Power Selfie ExpressionsZenodo, February 20, 2019, pp. 1-115, http://doi.org/10.5281/zenodo.2573569.
  3. Inder J. TanejaSelfie Expressions with Factorial, Fibonacci and Triangular ValuesZenodo, February 20, 2019, pp. 1-180, http://doi.org/10.5281/zenodo.2574151.
  4. Inder J. Taneja, Same Digits Equality Expressions: Power and Plus, Zenodo, January 03, 2020, 2019, pp. 1-1729, http://doi.org/10.5281/zenodo.3597506.

8. Selfie Numbers

Permutable, Basic Operations, Factorial and Square-Root

  1. Inder J. TanejaPermutable Powers Selfie NumbersZenodo, February 15, 2019, pp. 1-227, http://doi.org/10.5281/zenodo.2566445.
  2. Inder J. TanejaSelfie Numbers: Basic OperationsZenodo, March 26, 2019, pp. 1-134, http://doi.org/10.5281/zenodo.2609143.
  3. Inder J. TanejaFactorial-Type Selfie Numbers in Digit’s OrderZenodo, March 06, 2019, pp. 1-243, http://doi.org/10.5281/zenodo.2585586.
  4. Inder J. TanejaFactorial-Type Selfie Numbers in Reverse Order of DigitsZenodo, March 06, 2019, pp. 1-227, http://doi.org/10.5281/zenodo.2585599.
  5. Inder J. TanejaSquare-Root Type Selfie NumbersZenodo, July 06, 2019, pp. 1-248, http://doi.org/10.5281/zenodo.3352388.

Fibonacci and Triangular Numbers

  1. Inder J. TanejaFibonacci Sequence and Selfie NumbersZenodo, February 19, 2019, pp. 1-233, http://doi.org/10.5281/zenodo.2572044.
  2. Inder J. TanejaTriangular-Type Selfie NumbersZenodo, February 17, 2019, pp. 1-91   http://doi.org/10.5281/zenodo.2567571.
  3. Inder J. TanejaSimultaneous Representations of Selfie Numbers in Terms of Fibonacci and Triangular NumbersZenodo, February 19, 2019, pp. 1-233, http://doi.org/10.5281/zenodo.2574136.
  4. Inder J. TanejaTriangular-Type Selfie Numbers: Digit’s Order, Zenodo, April 11, 2019, pp. 1-240, http://doi.org/10.5281/zenodo.2636787.
  5. Inder J. TanejaTriangular-Type Selfie Numbers: Reverse Order of Digits, Zenodo, April 14, 2019, pp. 1-249, http://doi.org/10.5281/zenodo.2639099.
  6. Inder J. TanejaFibonacci Sequence Type Selfie Numbers: Basic Operations,  Zenodo, April 28, 2019, pp. 1-163, http://doi.org/10.5281/zenodo.2653093.
  7. Inder J. TanejaFibonacci Sequence Type Selfie Numbers with Square-RootZenodo, October 10, 2019, pp. 1-206, http://doi.org/10.5281/zenodo.3479255.
  8. Inder J. TanejaFibonacci Sequence Type Selfie Numbers with Factorial: Digit’s OrderZenodo, October 13, 2019, pp. 1-692, http://doi.org/10.5281/zenodo.3484117.
  9. Inder J. TanejaFibonacci Sequence Type Selfie Numbers with Factorial: Reverse Order of DigitsZenodo, October 13, 2019, pp. 1-742, http://doi.org/10.5281/zenodo.3484119.

Binomial Coefficients

  1. Inder J. TanejaSelfie Numbers with Binomial CoefficientsZenodo, March 17, 2019, pp. 1-131, http://doi.org/10.5281/zenodo.2596421.
  2. Inder J. TanejaSelfie Numbers with Binomial Coefficients and Fibonacci NumbersZenodo, March 30, 2019, pp. 1-148, http://doi.org/10.5281/zenodo.2617290.
  3. Inder J. TanejaBinomial Coefficients Triangular Type Selfie Numbers: Basic OperationsZenodo, April 25, 2019, pp. 1-72, http://doi.org/10.5281/zenodo.2650508.
  4. Inder J. TanejaSelfie Numbers with Binomial Coefficients, Triangular Numbers and Square-RootZenodo, May 10, 2019, pp. 1-209, http://doi.org/10.5281/zenodo.2707318.
  5. Inder J. Taneja, Selfie Numbers with Binomial Coefficients, Triangular Numbers and FactorialZenodo, July 09, 2019, pp. 1-172, http://doi.org/10.5281/zenodo.3273300.

Quadratic and Cubic

  1. Inder J. TanejaQuadratic-Type Selfie Numbers, Zenodo, February 25, 2019, pp. 1-315, http://doi.org/10.5281/zenodo.2577472.
  2. Inder J. Taneja, Cubic-Type Selfie Numbers, Zenodo, March 12, 2019, pp. 1-150, http://doi.org/10.5281/zenodo.2591257.

Concatenation-Type

  1. Inder J. TanejaConcatenation-Type Selfie Numbers with Factorial and Square-RootZenodo, March 08, 2019, pp. 1-43, http://doi.org/10.5281/zenodo.2587751.

Multiple Representations

  1. Inder J. Taneja, Multiple Representations of Selfie Numbers – I, Zenodo, February 08, 2024, pp. 1-108, https://doi.org/10.5281/zenodo.10633471.
  2. Inder J. Taneja, Multiple Representations of Selfie Numbers – II, Zenodo, April 15, 2024, pp. 1-284, https://doi.org/10.5281/zenodo.10974798.
  3. Inder J. Taneja, Multiple Choice Patterns in Selfie Numbers – I, Zenodo, 2024, April 15, pp. 1-85, http://doi.org/10.5281/zenodo.10972221.

9. Semi-Selfie Numbers

  1. Inder J. TanejaSemi-Selfie NumbersZenodo, February 12, 2019, pp. 1-394, http://doi.org/10.5281/zenodo.2562390.
  2. Inder J. TanejaPower-Type Semi-Selfie Numbers and PatternsZenodo, July 16, 2019, pp. 1-130, http://doi.org/10.5281/zenodo.3338366.
  3. Inder J. TanejaPatterns in Selfie and Semi-Selfie NumbersZenodo, February 6, 2019, pp. 1-51 http://doi.org/10.5281/zenodo.2563202.

10. Selfie Fractions

  1. Inder J. TanejaSelfie Fractions: Addable, Subtractable, Dottable and PotentiableZenodo, March 24, 2019, pp. 1-260, http://doi.org/10.5281/zenodo.2604531.
  2. Inder J. TanejaPandigital Equivalent Selfie FractionsZenodo, April 02, 2019, pp. 1-392, http://doi.org/10.5281/zenodo.2622028.
  3. Inder J. TanejaRepeated Digits Selfie Fractions: Two- and Three-Digits NumeratorsZenodo, September 12, 2019, pp. 1-1091, http://doi.org/10.5281/zenodo.3406655.
  4. Inder J. TanejaDifferent Digits Selfie Fractions: Two- and Three-Digits NumeratorsZenodo, September 12, 2019, pp. 1-337, http://doi.org/10.5281/zenodo.3474091
  5. Inder J. TanejaDifferent Digits Selfie Fractions: Four Digits NumeratorZenodo, October 06, 2019, pp. 1-844, http://doi.org/10.5281/zenodo.3474267.
  6. Inder J. TanejaPatterned Selfie FractionsZenodo, October 27, 2019, pp. 1-267, http://doi.org/10.5281/zenodo.3520096.
  7. Inder J. TanejaDifferent Digits Selfie Fractions: Five Digits Numerator – PandigitalZenodo, October 06, 2019, pp. 1-362, http://doi.org/10.5281/zenodo.3474379.
  8. Inder J. Taneja, Patterns in Splitted Selfie Fractions, Zenodo, July 30, 2023, pp. 1-122, http://doi.org/10.5281/zenodo.8197701

11. Equivalent Fractions

  1. Inder J. TanejaDifferent Digits Equivalent Fractions – IZenodo, March 24, 2019, pp. 1-165, http://doi.org/10.5281/zenodo.2604565.
  2. Inder J. TanejaDifferent Digits Equivalent Fractions – IIZenodo, March 24, 2019, pp. 1-244, http://doi.org/10.5281/zenodo.2604738.
  3. Inder J. TanejaDifferent Digits Equivalent Fractions: Single Digit NumeratorZenodo, November 15, 2019, pp. 1-794, http://doi.org/10.5281/zenodo.3543532.
  4. Inder J. TanejaDifferent Digits Equivalent Fractions: Two Digits NumeratorZenodo, November 15, 2019, pp. 1-794, http://doi.org/10.5281/zenodo.3543752.
  5. Inder J. TanejaDifferent Digits Equivalent Fractions: Three Digits NumeratorZenodo, November 19, 2019, pp. 1-1014, http://doi.org/10.5281/zenodo.3547874.

12. Amicable Numbers

  1. Inder J. TanejaAmicable Numbers with Patterns in Products and PowersZenodo, March 05, 2019, pp. 1-25, http://doi.org/10.5281/zenodo.2583306.

13. Palindromic-Type Representations

  1. Inder J. TanejaPalindromic-Type Palindromes – IZenodo, January 15, 2019, pp. 1-99 http://doi.org/10.5281/zenodo.2541174.
  2. Inder J. TanejaPalindromic-Type Non-Palindromes – IZenodo, January 15, 2019, pp. 1-117, http://doi.org/10.5281/zenodo.2541187.
  3. Inder J. TanejaPalindromic-Type Squared Expressions with Palindromic and Non-Palindromic Sums – IZenodo, January 15, 2019, pp. 1-133, http://doi.org/10.5281/zenodo.2541198.

14. Pythagorean Triples

  1. Inder J. TanejaPatterns in Pythagorean Triples Using Single and Double Variable ProceduresZenodo, January 19, 2019, pp. 1-134, http://doi.org/10.5281/zenodo.2544519.
  2. Inder J. TanejaMultiple-Type Patterns and Pythagorean TriplesZenodo, January 19, 2019, pp.1-53, http://doi.org/10.5281/zenodo.2544527
  3. Inder J. TanejaPalindromic-Type Pandigital Patterns in Pythagorean TriplesZenodo, January 20, 2019, pp. 1-160, http://doi.org/10.5281/zenodo.2544551.
  4. Inder J. TanejaGenerating Pythagorean Triples, Patterns, and Magic SquaresZenodo, January 20, 2019, pp. 1-121, http://doi.org/10.5281/zenodo.2544555.
  5. Inder J. Taneja, Patterns in Pythagorean Triples, Zenodo, March 13, 1-136, 2021, http://doi.org/10.5281/zenodo.4603197.
  6. Inder J. Taneja, Pandigital-Type and Pythagorean Triples Patterns, Zenodo, March 17, 1-750, http://doi.org/10.5281/zenodo.4611511.

15. Prime Numbers

Fixed Digits Repetitions

  1. Inder J. TanejaFixed Digits Repetitions Prime Patterns of Lengths 10, 9 and 8, Zenodo, February 8, 2019, pp. 1-175, http://doi.org/10.5281/zenodo.2560640
  2. Inder J. TanejaFixed Digits Repetitions Prime Patterns of Length 7Zenodo, February 8, 2019, pp. 1-176, http://doi.org/10.5281/zenodo.2560668.
  3. Inder J. TanejaFixed Digits Repetitions Prime Patterns of Length 6Zenodo, February 9, 2019, pp. 1-303, http://doi.org/10.5281/zenodo.2561096.
  4. Inder J. TanejaPrime Numbers in Fixed Digits Repetitions Prime PatternsZenodo, November 10, 2020, pp. 1-280, http://doi.org/10.5281/zenodo.4265818.
  5. Inder J. Taneja4-Digits Prime Numbers in Fixed Digits Repetition Prime PatternsZenodo, November 29, 2020, pp. 1-1544, http://doi.org/10.5281/zenodo.4295652.
  6. Inder J. Taneja, Fixed Digits Repetitions Prime Patterns for 5-Digits Prime Numbers, Zenodo, January 17, 2021, pp. 1-2069, http://doi.org/10.5281/zenodo.4445395.

Magic Square Type Palindromic Primes

  1. Inder J. Taneja, Magic Squares Type Palprimes of Orders 5×5, 7×7 and 9×9, Zenodo, February 27, 2019, pp. 1-143, http://doi.org/10.5281/zenodo.2578443.
  2. Inder J. TanejaSame Digits Embedded Palprimes of Lengths 3, 5 and 7Zenodo, August 08, 2020, pp. 1-315, http://doi.org/10.5281/zenodo.3977028.
  3. Inder J. Taneja3 and 5-Digits Multiple Choice Embedded PalprimesZenodo, December 05, 2020, pp. 1-511, http://doi.org/10.5281/zenodo.4307875.

Prime Numbers in Prime Numbers

  1. Inder J. TanejaPrime Numbers in Prime Numbers Up To 5 DigitsZenodo, July 16, 2019, pp. 1-265, http://doi.org/10.5281/zenodo.3338679.

16. Power Expressions

  1. Inder J. TanejaMultiple Choice Power ExpressionsZenodo, February 15, 2019, pp. 1-143, http://doi.org/10.5281/zenodo.2565729.

17. Patterns in Numbers

  1. Inder J. TanejaAmicable Numbers with Patterns in Products and PowersZenodo, March 05, 2019, pp. 1-25, http://doi.org/10.5281/zenodo.2583306.
  2. Inder J. TanejaPatterned Selfie FractionsZenodo, October 27, 2019, pp. 1-267, http://doi.org/10.5281/zenodo.3520096.
  3. Inder J. TanejaPatterns in Selfie and Semi-Selfie NumbersZenodo, February 6, 2019, pp. 1-51 http://doi.org/10.5281/zenodo.2563202.
  4. Inder J. Taneja, Single Letter Patterned Representations and Fibonacci Sequence Values, Zenodo, Feb 06, 2019, 1-40, https://doi.org/10.5281/zenodo.2558522.
  5. Inder J. TanejaPatterned Single Digits Representations of Natural NumbersZenodo, July 04, 2020, pp. 1-590, http://doi.org/10.5281/zenodo.3930382.
  6. Inder J. Taneja, Patterned Single Letter Representations of Natural NumbersZenodo, July 02, 2020, pp. 1-110, http://doi.org/10.5281/zenodo.3928507.
  7. Inder J. TanejaPatterned Selfie FractionsZenodo, October 27, 2019, pp. 1-267, http://doi.org/10.5281/zenodo.3520096.
  8. Inder J. Taneja, Patterns in Splitted Selfie Fractions, Zenodo, July 30, 2023, pp. 1-122, http://doi.org/10.5281/zenodo.8197701
  9. Inder J. Taneja, Patterns in Selfie Numbers – I, Zenodo, 2024, February 10, pp. 1-26, https://doi.org/10.5281/zenodo.10674570.
  10. Inder J. TanejaPatterns in Pythagorean Triples Using Single and Double Variable ProceduresZenodo, January 19, 2019, pp. 1-134, http://doi.org/10.5281/zenodo.2544519.
  11. Inder J. TanejaMultiple-Type Patterns and Pythagorean TriplesZenodo, January 19, 2019, pp.1-53, http://doi.org/10.5281/zenodo.2544527
  12. Inder J. TanejaPalindromic-Type Pandigital Patterns in Pythagorean TriplesZenodo, January 20, 2019, pp. 1-160, http://doi.org/10.5281/zenodo.2544551.
  13. Inder J. TanejaGenerating Pythagorean Triples, Patterns, and Magic SquaresZenodo, January 20, 2019, pp. 1-121, http://doi.org/10.5281/zenodo.2544555.
  14. Inder J. Taneja, Patterns in Pythagorean Triples, Zenodo, March 13, 1-136, 2021, http://doi.org/10.5281/zenodo.4603197.
  15. Inder J. Taneja, Pandigital-Type and Pythagorean Triples PatternsZenodo, March 17, 1-750, http://doi.org/10.5281/zenodo.4611511.
  16. Inder J. Taneja, Inder J. Taneja}, Multiple Choice Patterns in Selfie Numbers – I, Zenodo, 2024, April 15, pp. 1-85, http://doi.org/10.5281/zenodo.10972221.

All the work given in this part of “patterns in numbers” is repeated from other works given in previous parts. These are written here to give importance to pattened work on numbers.

Pdf file for Download

Leave a Reply

Your email address will not be published. Required fields are marked *

WP Twitter Auto Publish Powered By : XYZScripts.com